Introduction to Expanding Brackets

Using Algebra Tiles (Physical Stage)

This worksheet uses **Algebra Tiles**, for the purposes of this worksheet we will use the following representations:

1 For each diagram below, write down the expression that is represented in its simplest form.

2 a) The diagram below represents the expression 3x + 6.

What do you notice about how the tiles have been set out?

b) Based on your answer to part a), complete the algebraic identity

3 Complete the table below. Use a set of Algebra Tiles to help you. An example has been done for you.

Expression	Meaning	Diagram	Total x's	Total 1's	Expanded Expression
2(x + 3)	"2 lots of x + 3"		2	6	2x + 6
2(x + 4)					
3(x + 4)			3	12	
	"3 lots of <i>x</i> + 5"				
	"2 lots of <i>x</i> − 5"			-10	
2(x-1)					
2(-x+1)					
2(1-x)					

Complete the table below. Use a set of Algebra Tiles to help you. An example has been done for you.

Expression	Meaning	Diagram	Total x's	Total 1's	Expanded Expression
3(2x + 1)	"3 lots of 2x + 1"		6	3	6x + 3
3(2x-1)				-3	
2(3x-1)					
	"4 lots of 3 <i>x</i> − 1"				
4(-2x-2)			-8		

5 Billy represents an expression using the Algebra Tiles shown.

- a) What is the length of the side marked with an a?
- b) What is the length of the side marked with an **b**?
- c) What is the length of the side marked with an **c**?
- d) What is the length of the side marked with an **d**?
- e) What is the area of the shape marked with an A?
- f) What is the total area of the shapes marked with a **B**?
- g) What is the total area of the full shape?
- h) Write your answer to part g) in a different way using your answers to part a) and d).

b)

6 For each diagram below, write down two expressions for the total area of the shape. An example has been done for you.

Example x + 3

$$x(x + 3) = x^2 + 3x$$

c)

a)

e)

