

## **Factorising Single Brackets**

Pictorial Stage

1 Complete the table below. Use a set of Algebra Tiles to help you. An example has been done for you.

| Expression | HCF                      | Diagram | Height of Diagram | Length of<br>Diagram | Factorised<br>Expression |
|------------|--------------------------|---------|-------------------|----------------------|--------------------------|
| 2x + 6     | HCF of 2x and 6 is 2     |         | 2                 | x + 3                | 2(x + 3)                 |
| 2x + 8     |                          |         |                   |                      |                          |
| 2x + 12    |                          |         |                   |                      |                          |
| 3x + 12    |                          |         | 3                 |                      |                          |
| 4x + 12    |                          |         |                   |                      |                          |
| 4x - 12    | HCF of $4x$ and -12 is 4 |         |                   |                      |                          |
| 12 - 4x    |                          |         | 4                 |                      |                          |
| 12 - 6x    |                          |         |                   |                      |                          |

**2** Complete the table below. Use a set of Algebra Tiles to help you. An example has been done for you.

| Expression     | HCF                  | Diagram | Height of<br>Diagram | Length of<br>Diagram | Factorised<br>Expression |
|----------------|----------------------|---------|----------------------|----------------------|--------------------------|
| 4x + 6         | HCF of 4x and 6 is 2 |         | 2                    | 2x + 3               | 2(2x + 3)                |
| 4x + 2         |                      |         |                      | 2x + 1               |                          |
| 6x + 3         |                      |         |                      |                      |                          |
| 6x + 9         |                      |         |                      |                      |                          |
| 9 <i>x</i> + 6 |                      |         |                      |                      |                          |
| 9 <i>x</i> – 6 |                      |         |                      |                      |                          |
| 9x - 3         |                      |         |                      |                      |                          |

**3** The diagram represents the expression  $x^2 + 4x$ .



**4** The diagram represents the expression  $x^2 - 4x$ .



**5** The diagram represents the expression  $2x^2 - 5x$ .



**6** The diagram represents the expression  $2x^2 - 5x$ .



- a) What is the height of the diagram?
- b) What is the length of the diagram?
- c) Use your answers to parts a) and b) to complete the factorisation below.

$$x^2 + 4x = \boxed{(\boxed{x + \boxed{)}}$$

- a) What is the height of the diagram?
- b) What is the length of the diagram?
- c) Use your answers to parts a) and b) to complete the factorisation below.

$$x^2 - 4x = \square(\square x - \square)$$

- a) What is the height of the diagram?
- b) What is the length of the diagram?
- c) Use your answers to parts a) and b) to complete the factorisation below.

$$2x^2 - 5x = \square(\square x - \square)$$

- a) What is the height of the diagram?
- b) What is the length of the diagram?
- c) Use your answers to parts a) and b) to complete the factorisation below.

$$2x^2 - 4x = \square(\square x - \square)$$